Richardson elements for classical Lie algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Richardson Elements for Classical Lie Algebras

Parabolic subalgebras of semi-simple Lie algebras decompose as p = m⊕ n where m is a Levi factor and n the corresponding nilradical. By Richardsons theorem [R], there exists an open orbit under the action of the adjoint group P on the nilradical. The elements of this dense orbits are known as Richardson elements. In this paper we describe a normal form for Richardson elements in the classical c...

متن کامل

Graphs for Classical Lie Algebras

A nonzero element x of a Lie algebra L over a field F is called extremal if [x, [x,L]] ⊆ Fx. Extremal elements are a well-studied class of elements in simple finite-dimensional Lie algebras of Chevalley type: they are the long root elements. In [CSUW01], Cohen, Steinbach, Ushirobira and Wales have studied Lie algebras generated by extremal elements, in particular those of Chevalley type. The au...

متن کامل

The centralisers of nilpotent elements in the classical Lie algebras

The definition of index goes back to Dixmier [3, 11.1.6]. This notion is important in Representation Theory and also in Invariant Theory. By Rosenlicht’s theorem [12], generic orbits of an arbitrary action of a linear algebraic group on an irreducible algebraic variety are separated by rational invariants; in particular, ind g = tr.degK(g). The index of a reductive algebra equals its rank. Comp...

متن کامل

Classical Lie algebras

1 Classical Lie algebras A Lie algebra is a vector space g with a bilinear map [, ] : g× g → g such that (a) [x, y] = −[y, x], for x, y ∈ g, and (b) (Jacobi identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, for all x, y, z ∈ g. A bilinear form 〈, 〉 : g× g → C is ad-invariant if, for all x, y, z ∈ g, 〈adx(y), z〉 = −〈y, adx(z)〉, where adx(y) = [x, y], (1.1) for x, y,∈ g. The Killing form is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2006

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2005.03.033